Air Compressor Training

529 E. Business Highway 83 Weslaco, TX. 78596 Tel: 956-968-3121

Email: compressors@burtoncompanies.com

www.burtoncompanies.com

"Its what you learn after you know it ALL that counts"

- John Wooden

"The future belongs to those who see possibilities before they become obvious"

- John Sculley

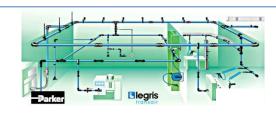
529 E. Highway 83 • Weslaco, TX 78596 Ph 956-973-3260 • Fax 956-973-9859 • Email: compressors@burtoncompanies.com

Sales - Rentals - Parts - Service- Instalations

Rotary Screw Compressors 5-500 hp

Vacuum Pumps 1-200 hp

Dryers

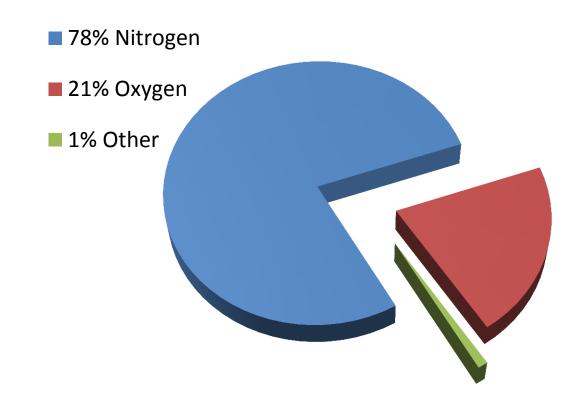

Air Treatment

Oil • Filters • Parts

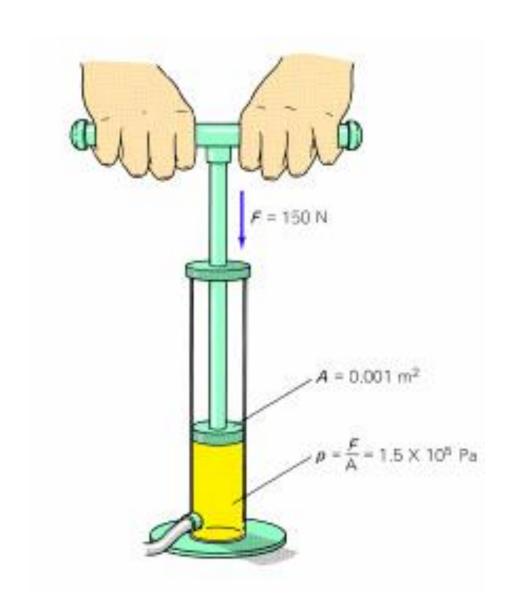
Energy Efficient Aluminum Piping for Compressed Air

Preventive Maintenance & Repairs

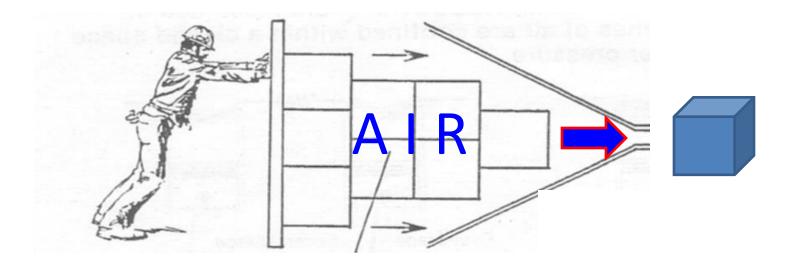
Compressed Air System Training

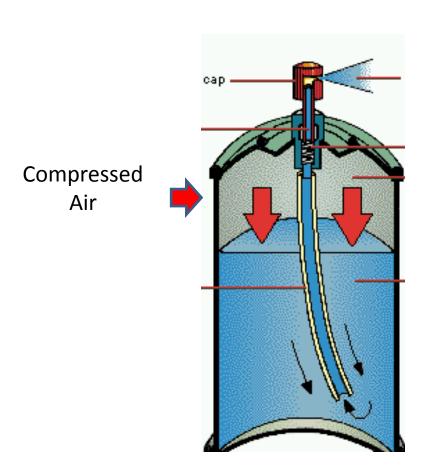


What is Air?


- It is a gas
- It is invisable
- Has no color
- Has no oder

Contains


Air Can Be Compressed!


What is Compressed Air?

It is air that has been squeezed and stored into a smaller space which then increases its pressure above atmospheric pressure.

Compressed Air is Stored Energy

Compressed air performs work when it is released and expands back into the atmosphere

Compressed Air is the Fourth Utility

It is a utility similar to WATER, GAS, & Electricty.

Energy from compressed air is used to power pneumatic production equipment

Compressed Air Has Manny Uses

Examples

Pneumatic Tools

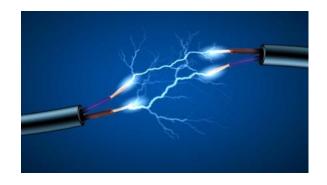
Painting

Why is Compressed Air Used?

- Compressed air is an excellent medium for storing and transmitting energy in order to do work
- It is used to cool components or parts during fabrication
- It is used to blow off waste material
- It is used to move parts

Why is Compressed Air Used?

- Pneumatic tools cost less
- Pneumatic tools produce less heat
- Pneumatic tools are lighter in weight



Why is Compressed Air Used?

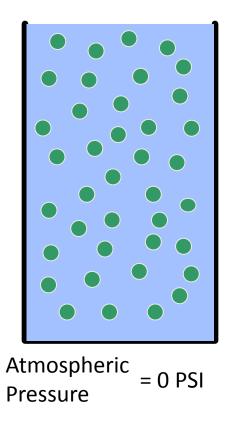
It is less dangerous than electricity

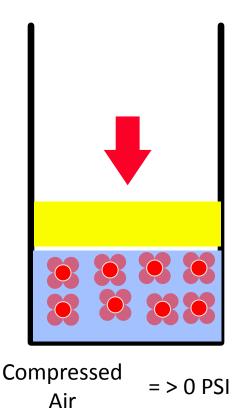
An electrical short may kill you but an air leak is unlikely!

CFM

- Compressed air is measured in CFM (cubic feet per minute)
- This is the **VOLUME** of compressed air that an air compressor produces in 1 minute

PSI


- Pounds per square inch
- This is the measure of FORCE that the compressed air applies



What Happens When Air Is Compressed?

The space it occupies is reduced and the air pressure increases

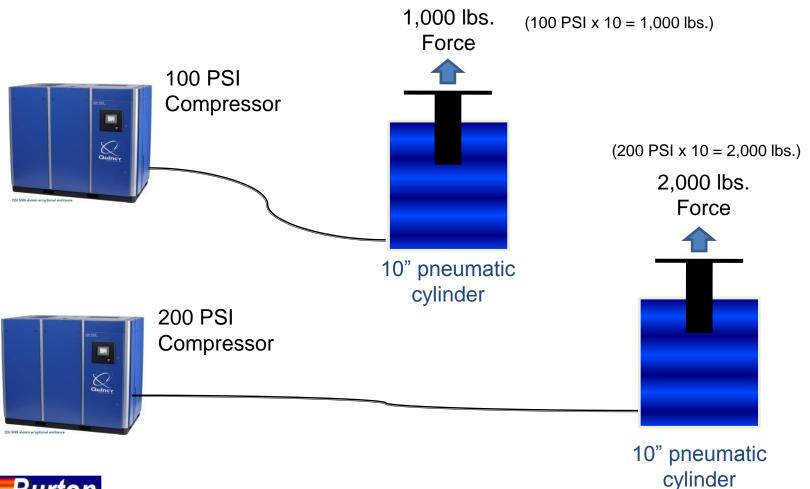
Same amount of air in a smaller space

Relation of Pressure & Volume

If the air in tank #1 is moved to tank #2 what will the pressure be in tank #2?

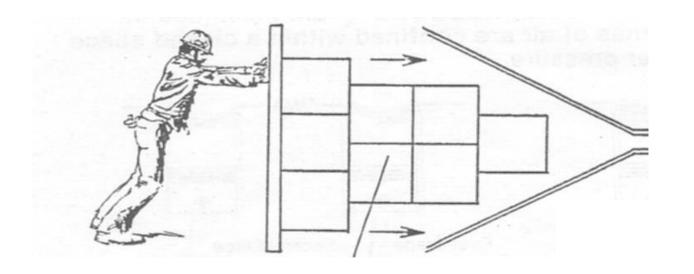
The pressure is reduced in half if the volume is doubled

Tank #1 500 Gallons 100 PSI



PSI = Force

Higher Pressure Increases the Applied Force


PSI x Diameter of Cylinder = Applied Force

How Many Cubic Feet of Ambient Air Is Required to Increase the Pressure to 100 PSI?

8 Cubic Feet

Ambient Air at Sea Level

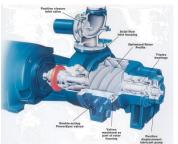
- Air has weight
- Its weight compresses it and increases its pressure
- At sea level the ambient air pressure is 14.7 PSIA (pounds per square inch absolute)

Air Pressure & Volume Changes with Elevation

- At 29,000 feet above sea level there is less air and the air pressure is only 4.56 PSIA
- The ambient air pressure is reduced by
 .5 PSIA for every 1,000 feet of elevation
- Also a compressor at higher elevation produces less air volume because there is less air.
- A 500 CFM compressor at sea level produces 500 CFM
- The same compressor at 5,000 feet elevation produces about 400 CFM

Types of Air Compressors

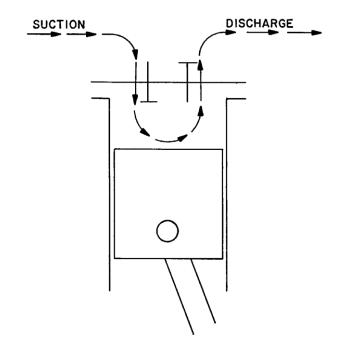
Reciprocating


75% duty cycle
 Designed to operate 75% of the time
 loaded & 25% of the time unloaded
 so it can cool down

Rotary Screw

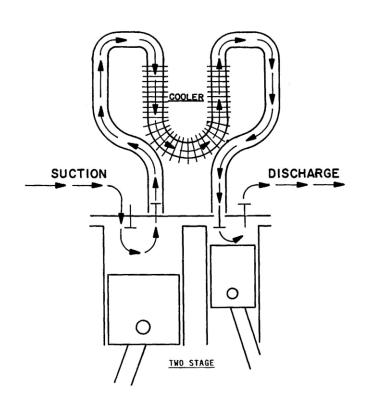
100% duty cycle
 Can operate loaded 100% of the time

Types of Reciprocating Compressors


Single Stage

Two-Stage

Reciprocating Compressor


• **Single Stage** - Compressor in which the air pressure is raised from inlet pressure to final discharge pressure in one compression cycle. As a rule of thumb, 100 psig is usually the maximum continuous discharge pressure for single-stage reciprocating compressors.

Reciprocating Compressor

Two Stage- Compressors in
 which the air pressure is raised
 from inlet pressure to final discharge
 pressure in two compression cycles.
 Staged compressors have intercoolers
 between stages to dissipate the heat
 generated by the first stage compression
 cycle. They typically operate at a
 maximum 175 psi.

Rule of Thumb

A reciprocating compressor produces 3.5 CFM per HP

For example: a 5 HP two-stage reciprocating compressor delivers about 17 CFM at 175 PSI

A screw compressor produces 4.5 to 5 CFM per HP

For example: a 100 hp screw compressor delivers 500 cfm at 100 psi

Reciprocating Compressors

TYPICAL HORSEPOWER RANGE 1 - 30 HP

Single Stage Quincy Compressor

- 2 3 hp
- 110-135 PSI
- Start-Stop
- Reed valve design
- 75% Duty Cycle

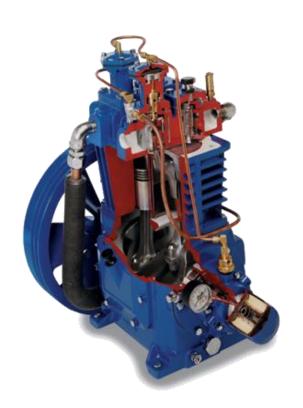
Quincy Two-Stage Reciprocating Compressors

GOOD	QT	SPLASH LUBE
BETTER	QP	PRESSURE LUBE
BEST	QR	HEAVY DUTY PRESSURE LUBE

QT Quincy Compressor Splash Lubricated

- 2 15 hp
- Splash lubricated
- Reed valve design
- 75% Duty Cycle

QP Quincy Compressor Pressure Lubricated


- 5 15 hp
- Pressure lubricated
- Oil filter
- Reed valve design

QR Quincy Compressor Heavy Duty Industrial Pressure Lubricated

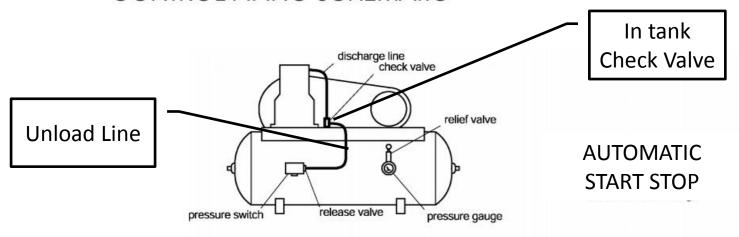
- 1 30 hp
- Pressure lubricated
- Heavy Duty Cast Iron
- Oil filter
- Tapered roller bearings
- Slow speed
- 100% Duty Cycle
- Superior valve design
- Oversized components

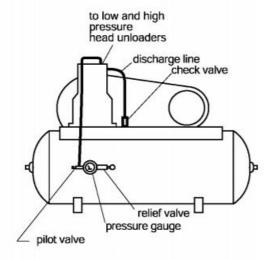


Reciprocating Compressors

CONTROLS

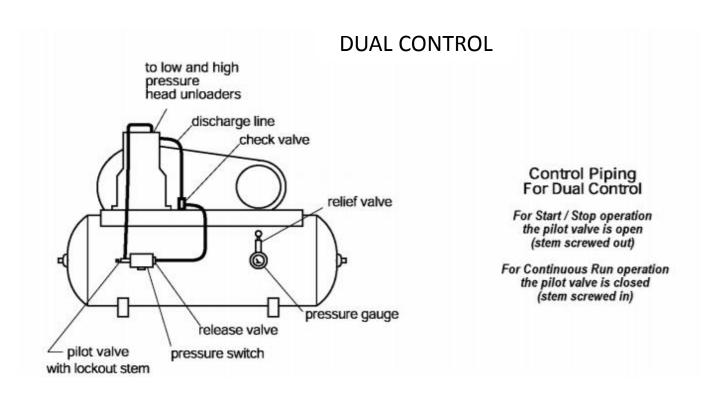
- Start/Stop


 the compressor motor
 starts and stops based on the pressure
 switch cut in and cut out settings,
 typically no more than 8 motor starts
 per hour
- Constant Run compressor motor runs continuously based off a pilot valve and head unloader or valve unloader. Used when electric motor starts are more than 8 per hour also used on gas engine units



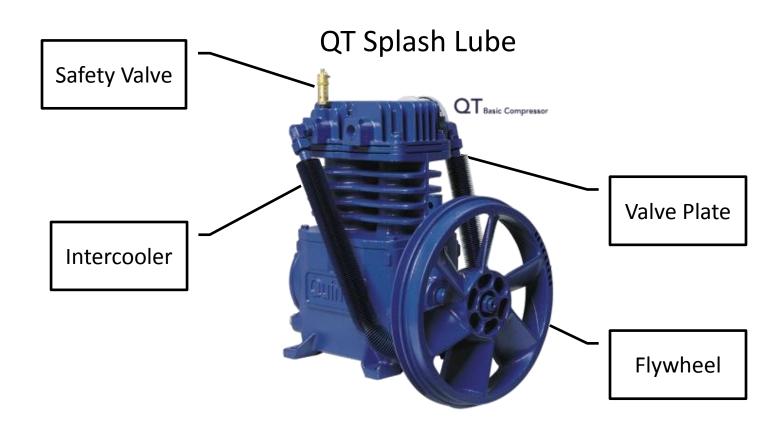
Reciprocating Compressor

CONTROL PIPING SCHEMATIC



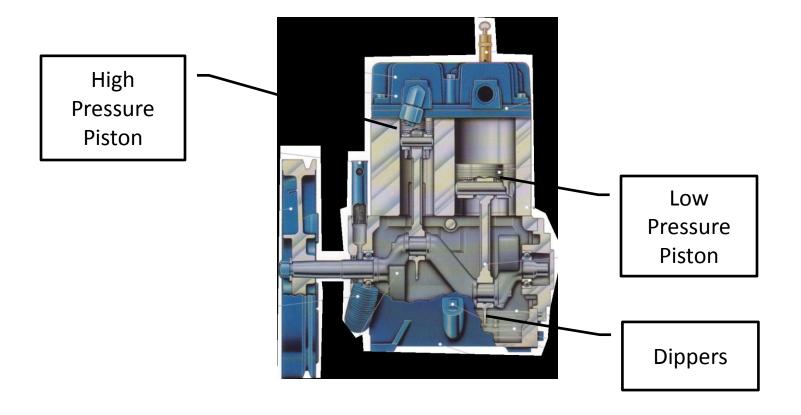
CONTIUOUS RUN

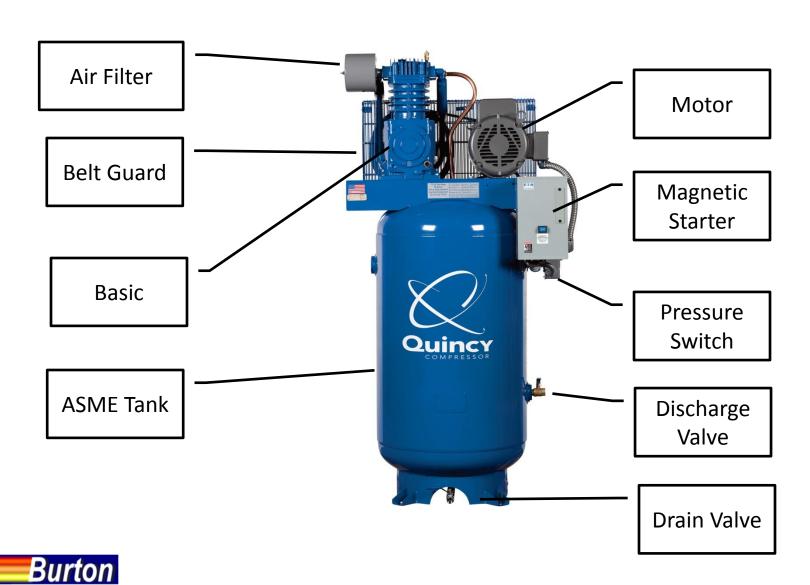
Reciprocating Compressor


Reciprocating Compressors

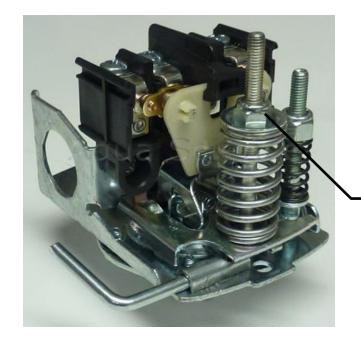
DUTY CYCLE

- The percentage of time the compressor runs loaded in a given time period
- A typical reciprocating compressor has a 75% duty cycle.
- The compressor can be loaded 75% of the time and unloaded or turned off 25% of the time allowing it to cool down



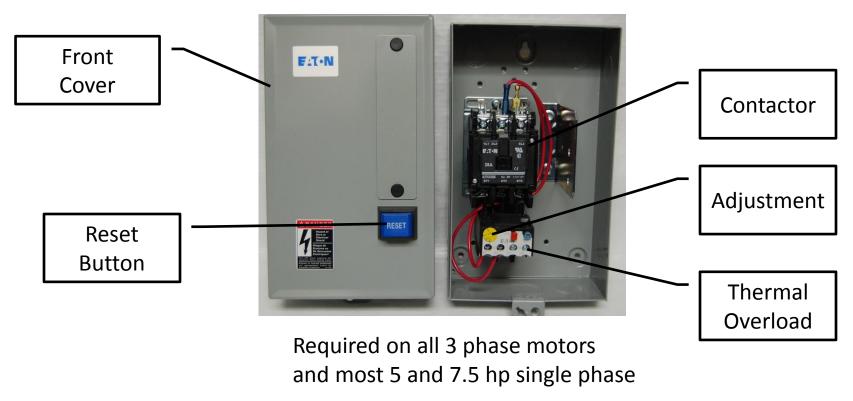


QT Splash Lube



Reciprocating Compressors

Pressure Switch

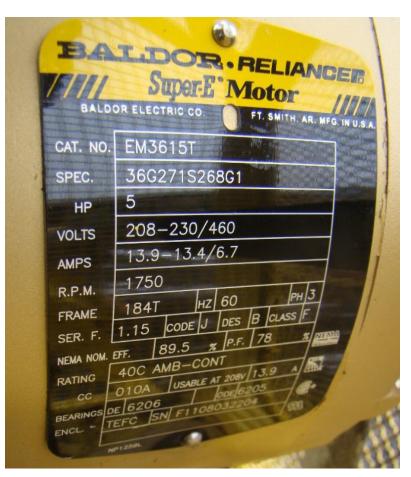


Pressure
Adjustment
Clockwise
to increase
pressure

IEC Magnetic Starter

An electromechanically operated switch that provides a safe method of starting an electric motor with a large load. Also provides under-voltage and overload protection.

Reciprocating Compressor Motor Types



ODP Motor

Reciprocating Compressor Motor Tag and Types

Tag Information

- Cat. No.
- Spec.
- HP
- Volts
- Amps
- RPM
- Frame
- HZ
- PH
- Ser.F. (service factor)
- Encl. (enclosure)
- Bearings
- SN

Electricity Voltages and Phases for 60 hz

Single Phase	3 Phase
115 volts	200 or 208 volts
230 volts	230 volts
	460 volts

- Incoming voltage can vary 10%
- Compressor motors 10 hp and larger are 3 phase

Determining Compressor PSI

The equipment that requires the highest operating pressure determines the compressor operating pressure set point.

CFM Required by Tool

Tool	CFM Required
½" Impact	5
1" Impact	12
Paint Sprayer	10
Air Sander	5

Guide to Selecting a Reciprocating Air Compressor

CONSIDERATIONS						
APPLICATION	STATIONARY OR PORTABLE					
SIZE: CFM, HP	CONTINUOUS DUTY					
PRESSURE	LOCATION: INDOORS, OUTDOORS					
# OF COMPRESSORS NEEDED	MOTOR ENCLUSURE					
OIL FREE AIR	TANK SIZE AND VERTICAL OR HOR.					
ELECTRIC MOTOR OR GAS ENGENE	SIMPLEX OR DUPLEX					
VOLTAGE AND PHASE	HOW SOON NEEDED					

Salesman Date Phone Business Address Fax City, State, Zip E-mail Contact Name Position **Compressor Information** What is the air used for? Total CFM Needed including future? \widehat{a} PSI # of compressors required? Is it for intermittent or continuous use? Time frame compressor needed? Existing compressors on site? Brand HP Brand HP Brand HP Is a backup compressor needed? Compressor located indoors or outdoors Voltage Requirements? Cooling Medium – air or water cooled?

If you don't know your air demand at peak production then list the pneumatic equipment to be operated at the same time.

Equipment | CFM | PSI Required | Required | Required | PSI Requir

Equipment	CFM .	PSI Required	
	Required		
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
Total CFM:		Highest PSI:	
RECIPROCATING		SCREW	
Oil Free		Oil Free	
Basic or Base or Tank Mounted		Air-Cooled or Water Cooled	
HP		HP	
Voltage		Voltage	
Controls: (stop-start, constant-run		Fixed Speed or Variable Capacity or	
or dual)		Variable Speed	
Tank & Size – Vert. or Hor.		Cabinet	
Starter		Low Sound adder to Cabinet	
Motor- ODP or TEFC		Base or Tank mounted compressor	

RECIPROCATING	SCREW	
Simplex	Motor – ODP or TEFC	
Duplex with Alternating Panel	Starter – Standard, Reduced	
	Voltage, or Wye Delta	
Low Oil Level Switch	Phase Monitor	
Drain (pneumatic or electric)	NEMA 1 or 4 Electrical Controls	
Flex Hose	Premium Efficiency Drive Motor	
Beltguard Aftercooler	Flex Hose	
Vibration Pads	Vibration Pads	
Extended Warranty Kit		

DRYER					
Type of Application					
Dryer Type: Refrigerated or Desiccant	t				
Dryer Used With Recip. or Screw Con	npressor?				
CFM of Compressor					
Ambient Temperature where dryer wil					
Inlet Temperature of air into the dryer					
Operating Pressure of air into the drye	r				
Pressure Dew Point required					
Voltage					
Dryer Model Selected					
	Filters				
Particulate					
Coalescing					
	Tank				
Vertical or Horizontal					
Size in Gallons					
Pressure					
Drain					
Zero Loss Type					
Electronic Type					
Pneumatic Type					
Other					
Regulator					
Lubricator					

Effects of Increasing Operating Pressure

- CFM output decreases
- More hp required
- 1% more energy used for every 2 psi increase in pressure
- The motor draws more amps.

The Oposite Happens When Operating Pressure is Lowered

Reciprocating Compressors We Stock

Air Compressor Sales • Parts • Service

SERVICE TRUCK COMPRESSORS

MODEL	BRAND	CFM	PSI	HP	ENGINE	TANK	KIT	BASIC
QT7.5-13H-30-PRO	QUINCY	23.6	175	13	HONDA	30	EWK3	QT7.5
QT7.5-14K-30-PRO	QUINCY	23.2	175	14	KOHLER	30	EWK3	QT7.5
AM1-PH65-08M	Mi-T-M	13.1	100	196 cc	HONDA	8		
AM1-PH65-08WPM	Mi-T-M	13.9	90	212 cc	HONDA	8		

CONTRACTOR PORTABLE COMPRESSORS

MODEL	BRAND	CFM	PSI	HP	VOLTS	TANK	BASIC
Q12120P	QUINCY	7.1	100	2	115/1	20	4116091341
Q12126VP	QUINCY	7.1	100	2	115/1	26V	4116091341
AM1-PE02-05M	Mi-T-M	4.2	90	2	115/1	5	

Reciprocating Compressors We Stock

Æ									
	STATIONARY ELECTRIC COMPRESSORS								
	MODEL	BRAND	CFM	PSI	HP	VOLTS	TANK	KIT	BASIC
	Q13160V	QUINCY	12.3	100	3.5	230/1	60		4116091342
	QTV54-60-1-PRO	QUINCY	15.2	175	5	230/1	60	EWK2	QT54
ž	QTV5-80-1-PRO	QUINCY	17.2	175	5	230/1	80	EWK3	QT5
P	QTV5-80-3-PRO	QUINCY	17.2	175	5	230/3	80	EWK3	QT5
	QTV7.5-80-1-PRO	QUINCY	17.2	175	7.5	230/1	80	EWK3	QT7.5
	QTV7.5-80-3-PRO	QUINCY	17.2	175	7.5	230/3	80	EWK3	QT7.5
	QTV10-120-3-PRO	QUINCY	35	175	10	230/3	120	EWK4	QT10
6	QTH15-120-3-PRO	QUINCY	52.5	175	15	230/3	120	EWK5	QT15

ROTARY SCREW COMPRESSORS

MODEL	BRAND	CFM	PSI	HP	VOLTS	TANK	Dryer
QGS10WD	QUINCY	37	125	10	208/230/460/3	120	YES
QGS15WD	QUINCY	52	125	15	208.230.460/3	120	YES
QGS30WD	QUINCY	122	125	30	208.230,460/3	120	YES

REFRIGERATED AIR DRYERS

ILLI ILLIGEIO	REFREGERATED PARTICIO							
DRYER	BRAND	CFM @ 50	CFM @ 40	FOR COMPRESSOR	VOLTS			
QRHT25	QUINCY	25	20	5-7.5 HP	115/1			
QRHT50	QUINCY	50	40	10-15 HP	115/1			
QRHT75	QUINCY	75	60	20 HP	115/1			
QRHT100	QUINCY	100	80	20-25 HP	115/1			
QRHT125	QUINCY	125	100	25-30 HP	115/1			

EWK KITS EXTEND WARRANTY: PACKAGE FROM 1 TO 2 YEARS & PUMP FROM 2 TO 3 YEARS

Quincy Gas Engine Compressors

14 hp Kohler

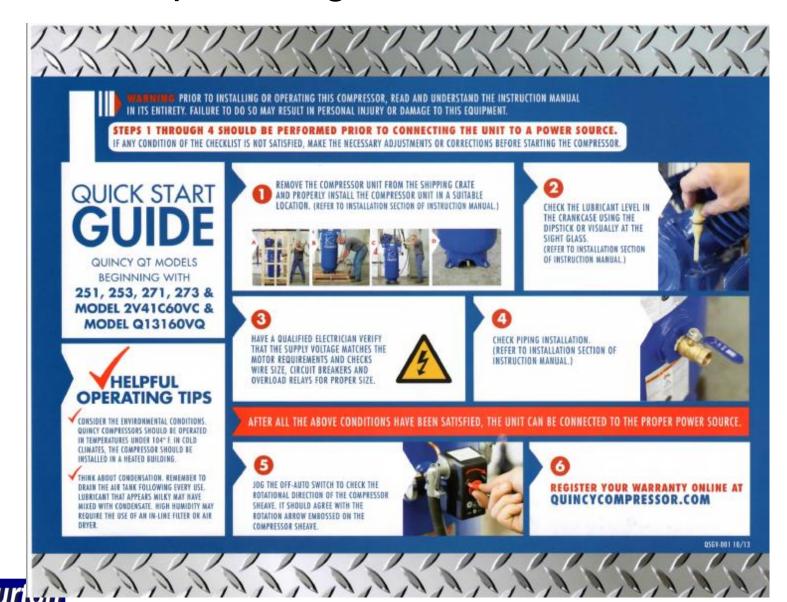
13 hp Honda

Duplex Compressor

Quincy Compressor Warranty

Quincy Compressor Warranty

Series	Standard Warranty	Extended Warranty
Single Stage & Pro units	1 year package 2 years pump	2 years package 3 years pump
QR units	5 year on major components other parts 1 year	
QGS, QGD	5 years airend, drive motor, oil tank, cooler, flex coupling, 1 year package	
QGV & QSI	10 year airend, 5 years drive motor, oil tank, cooler, flex coupling, 1 year package	



Quincy Compressor Warranty Requirements

Series	Requirements for Warranty
Reciprocating Compressors	Register compressor on line, do maintenance, use original parts and oil
Rotary Screw Compressors	Start-up by Burton, use original parts and oil, do maintenance, send oil samples every 2,000 hours

Reciprocating Quick Start Guide

Reciprocating Quick Start Guide

Before installing compressor – read and understand instruction manual

- Remove from shipping crate and install in a suitable location
- 2. Check the fluid level
- 3. Have a qualified electrician verify that the supply voltage matches the motor requirements and checks wire size and circuit breakers and overload relays for proper size

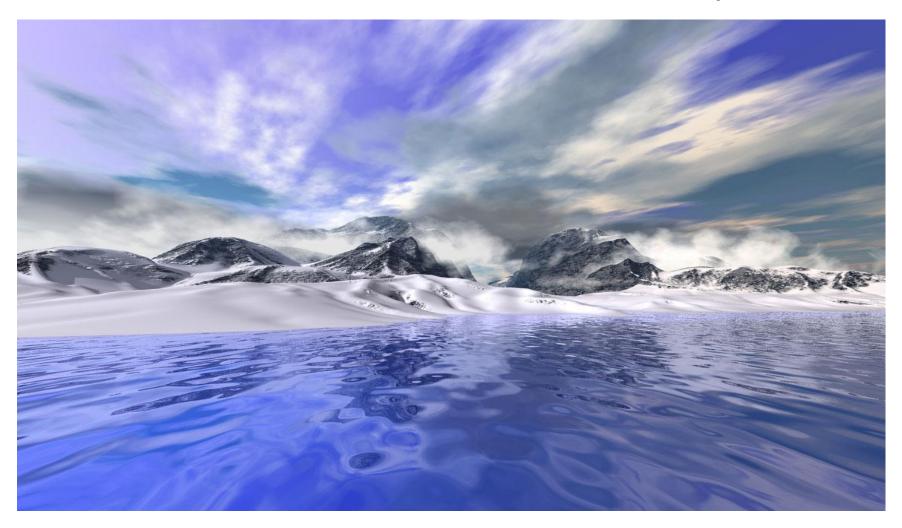
Reciprocating Quick Start Guide

- 4. Check piping installation
- 5. Jog the motor to check the rotation of the compressor
- Register your warranty online at Quincycompressor.com

Reciprocating Compressor Quin-Cip Lubricant

112543Q100, Quart 112543G100, Gallon 112543P100, 5-Gallon 112543D100, 55-Gallon

Reciprocating Compressor Maintenance


Interval	Procedure
8 hrs.	Check oil level
8 hrs.	Drain water from tank
40 hrs.	Clean or replace air filter
100 hrs.	Replace breaking oil with Quin Cip or Quin Cip D
160 hrs.	Check belt tension
500 hrs. or 3 mos.	Change oil Quin Cip
1000 hrs.	Change oil Quin Cip D if using
2000 hrs.	Inspect pressure switch, contacts on motor starter

Compressed Air Treatment

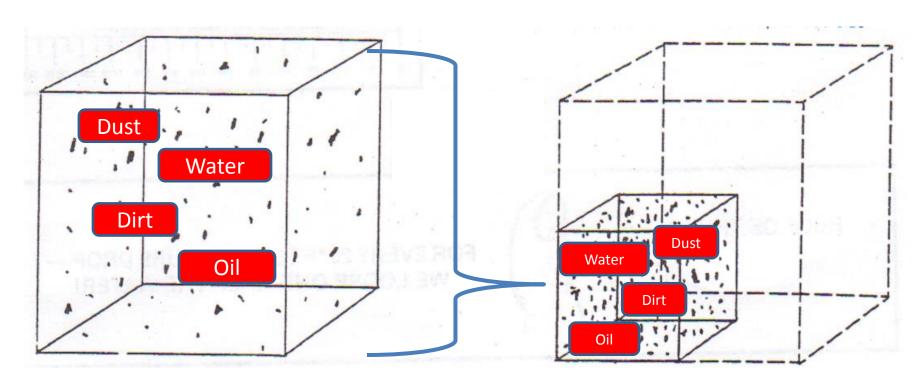
Ambient Air Contains Humidity

Humidity

It is the amount of water vapor in the air

A 100 hp Compressor Can Produce

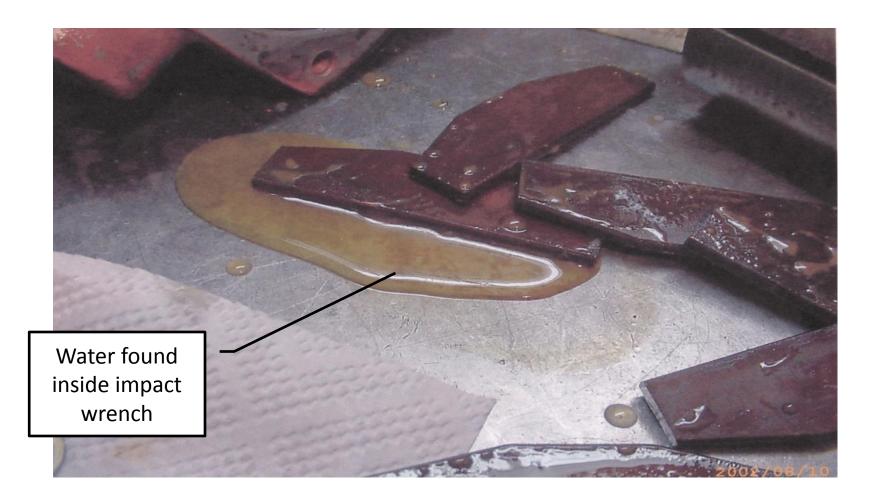
25 gallons in 24 hours


Compressed Air Treatment

Compressed air has to be clean and dry before it can be used

Compressed Air Contains Contaminents

- Atmospheric air naturally contains several impurities such as dust, hydrocarbons and water.
- Lubricated compressors contaminate the compressed air with oil

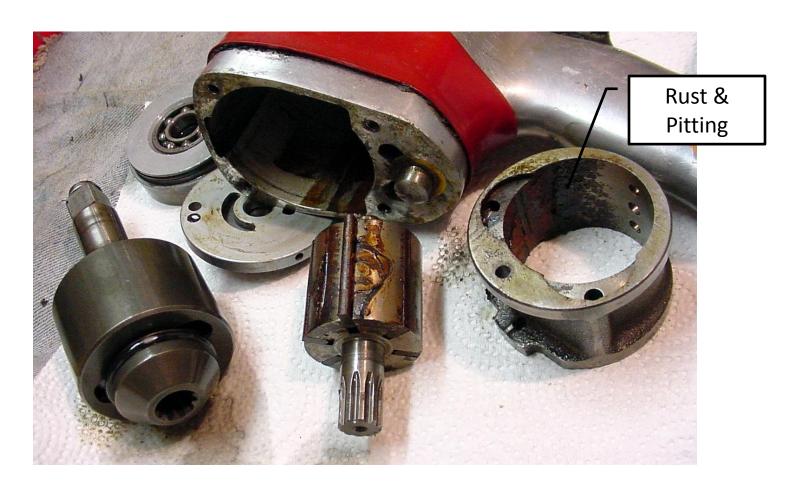

Impurities in Compressed Air Can Cause

- Damage to distribution lines, may cause leaks, clog lines and cause pressure drops
- Increase maintenance cost
- Reduce eficiency and life of pneumatic devices
- Deterioration of final product quality
- Limits the reliability of the production process and all of its components
- Decreases overall profitability

Harmful Contamination

Water in compressed air damages equipment

Harmful Contamination


Water in compressed air damages equipment

Harmful Contamination

Water in compressed air damages equipment

Compressed Air Treatment

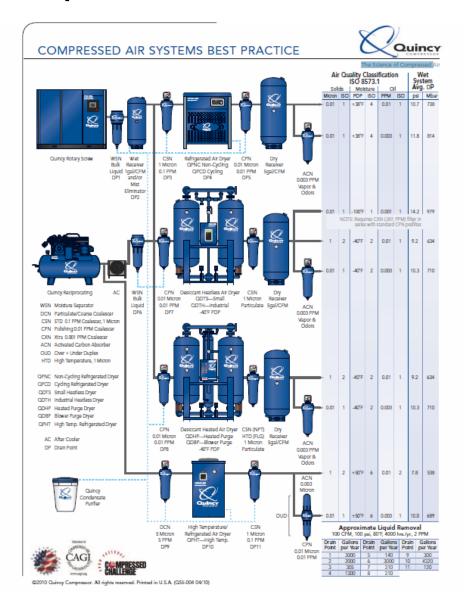
- Solid particulate and oil can be removed by filtration
- Water cannot be removed completely by filtration alone as it remains in a vapor state until it cools and condenses
- A dryer is required to remove the water in compressed air

Dew Point

- Atmospheric temperture (varying according to pressure and humidity) below which water droplets begin to condense and dew can form
- It is the measure of dryness we want the compressed air to be
- Typical dew point for automotive shops is 50°F
- Typical dew point for industry is 40°F

Relation of Temperature & Humidity

- Hot air holds more moisture than cool air
- Humidity in air is reduced by 50% for every 20°F reduction in temperature
- A dryer cools the compressed air to a certain temperature and the moisture in the air condenses.
 The condensed water is removed with an automatic drain.



Moisture is Removed From Compressed Air Using a Systems Approach

- Aftercoolers 75% removal
- Mechanical Separators
- Filters
- Air Dryer
- Receivers & Pipe
- Filters
- Drains & Drip Legs

Compressed Air Treatment

Components of a Compressed Air System

Aftercoolers for Reciprocating Compressors

Beltguard Aftercooler

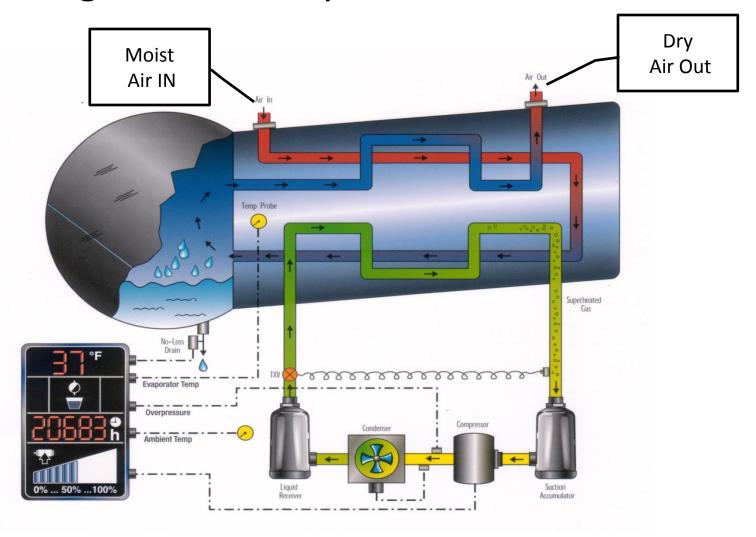
Stand Alone Aftercooler

Air Dryers

- Dew point 40°F or 50°F
- Inlet Temperature up to 180°F
- Used with Reciprocating Compressors

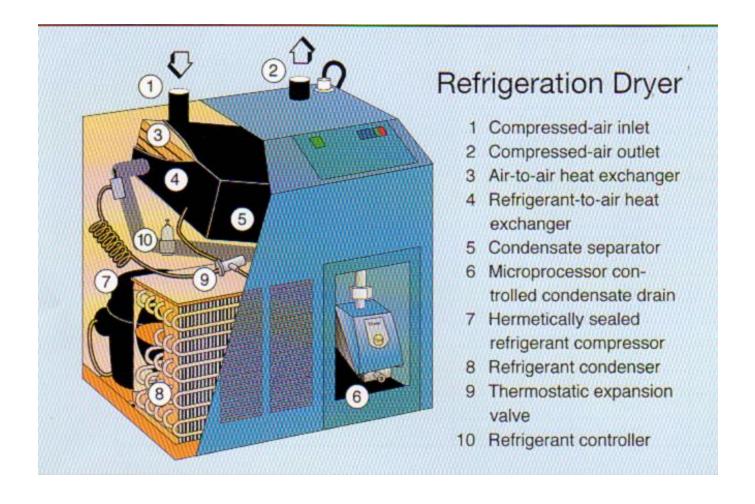
Standard Refrigerated Dryer

- Dew point 39°F
- Used with Screw Compressors



Desiccant or Regenerative Dryer

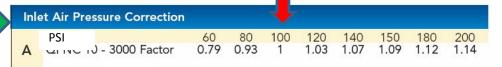
Dew point -40°F



Refrigerated Air Dryer Flow Schematic

Refrigerated Air Dryer Components

Sizing a Standard Refrigerated Air Dryer


Factors that affect dryer efficiency

- 1. Inlet Air Pressure
- 2. Inlet Air Temperature
- 3. Ambmient Air Temperature
- 4. Dew Point Desired

Correction Factors for Sizing a Refrigerated Air Dryer

CORRECTION FACTORS

Inle	et Air Temperature Correc	tion	↓		
	Temp.°F	80	100	110	120
В	Temp.°F QPNC 10 - 250 Factor	1.05	1	0.87	0.67
_	QPNC 325 - 3000 Factor	1.05	1	0.84	0.69

	Temp.°F	80	90	100	110
C	QPNC 10 - 250 Factor	1.12	1.03	1	0.92
	QPNC 325 - 3000 Factor	1.15	1.07	1	0.9
	1178140-1798				
De	w Point Correction				
De		37 30°	Ε <i>Λ</i>	5 50°E	
De	w Point Correction Temp.°F QPNC 10 - 250 Factor	37–39°	F 4	5–50°F	

Example One: Conditions Requirement

Capacity 480 cfm
Inlet Pressure 120 psig
Inlet Air Temp. 110°F
Ambient Temp. 100°F
Dew Point 39°F

Example Two: Conditions

QPNC 500 Corrected Flow for:

Inlet Pressure 120 psig
Inlet Air Temp. 110°F

90°F

Example One: Calculations

Dryer Required = $\frac{\text{cfm required}}{\text{(A) x (B) x (C) x (D)}}$ = $\frac{480}{(1.03) \text{ x (.84) x (1) x (1)}}$ = 555 cfm dryer requiredSelect QPNC 600 for this application

Example Two: Calculations

Corrected Capacity = Std. Capacity x (A) x (B) x (C) x (D) = 500 x (1.03) x (.84) x (1.07) x (1) = 463 cfm

QPNC-25 Non-Cycling Dryer

Ambient Temp.

Dew Point

High Temperature Refrigerated Air Dryer

REFRIGERATED AIR DRYERS

QRHT — HIGH TEMPERATURE REFRIGERATED DRYER

SPACE SAVING REFRIGERATED DRYER

QRHT Series Total Air System High Temperature Dryers integrate five different components that perform separate functions. An air-cooled aftercooler, refrigerated dryer, moisture separator, Zero Loss drain, and coalescing filter. These five components work in harmony to ensure clean dry, filtered compressed air.

- 180°F Inlet Temperature
- · 3-in-1 Design
- . Eliminates Water, Oil and Dirt from Air
- · Prevents Damage to Pneumatic Tools
- · Fewer Finished Product Defects
- Prevents "Fisheye" Paint Splotches
- · Reduces Operational Downtime
- Increase Profitability and Productivity
- · Eliminates Air Line Purging

QRHT - SPECIFICATIONS & ENGINEERING DATA

High T	emper	ature	Power			- 1	Olmers to	ns		
Model	cfm © 100 psig	Voltage	Consumption Kw	Max psig	Refrigerant	L In	W In.	H In.	Approx Wt lb.	Connections in.
QRHT 25	25	115/1/60	42	232	R134a	21	14	18	57	1/2" NPT
QRHT 50	50	115/1/60	94	232	R404A	23	19	31	108	1 NPT
QRHT 75	75	115/1/60	169	232	R404A	23	19	31	168	3/4" NPT
QRHT 10	0 100	115/1/60	163	232	R404A	23	19	41	231	3/4" NPT
ORHT 12	5 125	115/1/60	203	232	R404A	23	19	41	236	3/4" NPT

Notes: Instrumentation includes; On/off switch, refrigerant suction pressure gauge and drain test button. Coalescing filter is supplied for all

Model	50°F PDP	40°F PDF
QRHT 25	25	20
QRHT 50	50	40
QRHT 75	75	60
QRHT 100	100	80
QRHT 125	125	100

High Temperature Refrigerated Air Dryer

QRHT — SPECIFICATIONS & ENGINEERING DATA

High T	empera	ature	Power				Xmersio	ns		
Model	cfm e 100 psig	Voltage	Consumption Ker	Max psig	Refrigerant	ln.	in.	H In.	Approx Wt. lb.	Connections in.
QRHT 25	25	115/1/60	42	232	R134a	21	14	18	57	1/2" NPT
ORHT 50	50	115/1/60	84	232	R404A	23	19	31	108	1 NPT
QRHT 75	75	115/1/60	169	232	R404A	23	19	31	168	3/4" NPT
QRHT 10	0 100	115/1/60	163	232	R404A	23	19	41	231	^{3/4"} NPT
QRHT 12	25 125	115/1/60	203	232	R404A	23	19	41	236	^{3/4"} NPT

Notes: Instrumentation includes; On/off switch, refrigerant suction pressure gauge and drain test button. Coalescing filter is supplied for all models.

Inlet Flow SCFM								
Model	50°F POP	40°F PDP						
QRHT 25	25	20						
QRHT 50	50	40						
QRHT 75	75	60						
QRHT 100	100	80						
QRHT 125	125	100						

SCFM flow is rated at 180°F max. inlet, 100 psig and 100°F ambient

Sizing a Refrigerated Air Dryer

REFRIGERATED AIR DRYERS

QRHT — HIGH TEMPERATURE REFRIGERATED DRYER

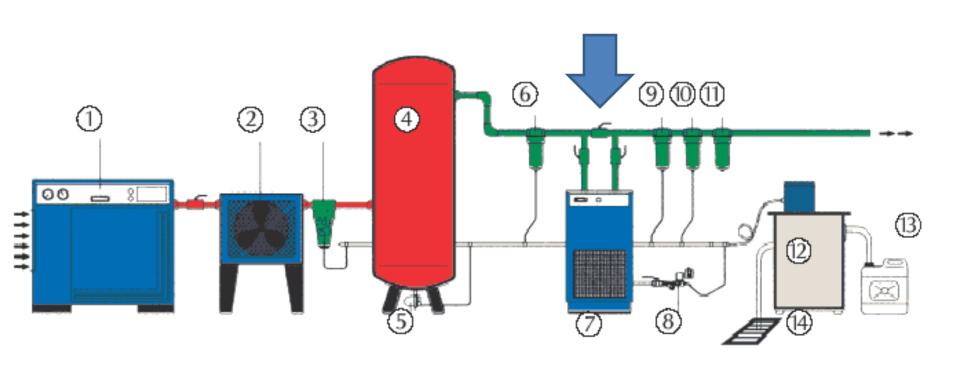
SPACE SAVING REFRIGERATED DRYER

QRHT Series Total Air System High Temperature Dryers integrate five different components that perform separate functions. An air-cooled aftercooler, refrigerated dryer, moisture separator, Zero Loss drain, and coalescing filter. These five components work in harmony to ensure clean dry, filtered compressed air.

- 180°F Inlet Temperature
- 3-in-1 Design
- . Eliminates Water, Oil and Dirt from Air
- · Prevents Damage to Pneumatic Tools
- . Fewer Finished Product Defects
- Prevents "Fisheye" Paint Splotches
- Reduces Operational Downtime
- Increase Profitability and Productivity

QRHT - SPECIFICATIONS & ENGINEERING DATA

High T	empera	ature	Power			- 1	Olmers to	ns		
Model	cfm © 100 psig	Voltage	Consumption Kwr	Max psig	Refrigerant	L In	W In.	H In.	Approx Wt lb.	Connections in.
QRHT 25	25	115/1/60	42	232	R134a	21	14	18	57	1/2" NPT
QRHT 50	50	115/1/60	94	232	R404A	23	19	31	108	1 NPT
QRHT 75	75	115/1/60	169	232	R404A	23	19	31	168	3/4" NPT
QRHT 10	0 100	115/1/60	163	232	R404A	23	19	41	231	3/4" NPT
QRHT 12		115/1/60	203	232	R404A	23	19	41	236	3/4" NPT

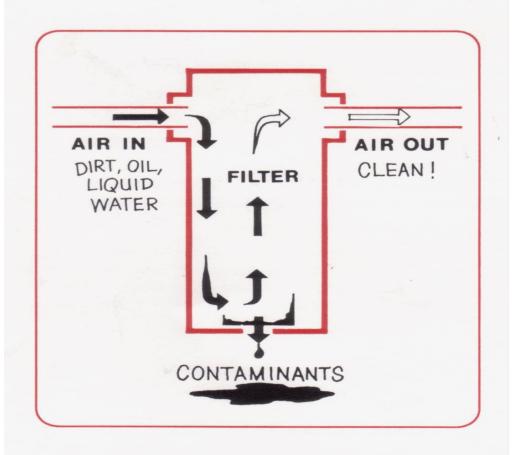

Notes: Instrumentation includes; On/off switch, refrigerant suction pressure gauge and drain test button. Coalescing filter is supplied for all

Inlot Flow SCFM							
Model	50°F PDP	40°F PDP					
QRHT 25	25	20					
QRHT 50	50	40					
QRHT 75	75	60					
QRHT 100	100	80					
QRHT 125	125	100					

SCFM flow is rated at 180°F max. Inlet, 100 psig and 100°F ambient

Dryer Installation 3-Way Bypass

Air Purity Classes – ISO 8573-1


Extract from ISO 8573-1 - threshold values

		Solids		Water	Oil
ISO 8573-1:2010 Class	Mavimum ni	umber of parti	cles ner m³	Pressure Dew Point	Totalshare in oil
	Widxilliaili	amber or parti	cies per ili		(liquid aerosol and mist)
	0.1 - 0.5 μm	0.5 - 1 μm	1-5μm	vapor	mg/m³
0	According to det	requirements than Class 1			
1	<= 20.000	<= 400	<= 10	<= -70 °C	0,01
2	<= 400.000	<= 6.000	<= 100	<= -40 °C	0,1
3		<= 90.000	<= 1.000	<= -30 °C	1
4	-		<= 10,000	<= -3 °C	5
5	-			<= +7 °C	
6	-			<= +10 °C	
7				<= -40 °C	
8					
9					
x	-				L10

HOW TO FILTER COMPRESSED AIR

Principles and Procedures

Air Filters

Particulate Filter

- Removes solid particles
- Efficiency 90%

Coalescing Filter

- Removes solid particles, liquid water, and oil
- Efficiency 99.9%

Activated Carbon Filters

- Oil vapor, hydrocarbon odors
- Efficiency 99.997%

QCS Quincy Oil Water Separators

We Sell

Parts for All Major Compressor Brands!

- Quincy
- Almig
- Atlas Copco
- Bauer
- Boge
- Champion
- Curtis
- CP

- Gardner Denver
- Kaiser
- Kobelco
- Palatek
- Powerex
- IR
- Saylor Beal
- Sullair

We Sell

Filters - Oil - Parts

- Airends
- Air Filters
- Air Gauges Motors
- Coolers
- Drains
- Drive Couplings Separators
- Fans
- Flex Hoses Tanks

- FRLs
 - Line Filters
- Ball Valves Oil Analysis
 - Oil Filters
 - Safety Valves

 - Solenoid Valves

Related That Go With the Compressor

- Extended Warranty Kit
- Line Filter
- Air Dryer
- Flex Hose
- Vibration Pads
- FRL
- Tank Drain
- Service Agreement

Information Required when Requesting a Quote for Parts

- Customer Name and location
- Model
- Serial Number
- Record of Change on Quincy Recips

Information Required when Requesting a Quote for Parts From Store 90

- Contact Name and location
- Model
- Serial Number
- Record of Change on Quincy Recips

An air system with a refrigerated air dryer has no air downstreem of the dryer

Dryer is Frozen?

A customer comes in to buy a pressure switch because it bleeds all of the air from the air tank through the unloader valve on the pressure switch.

Intank check Valve is Bad

A customer says he is finding a lot of water in the crankcase of the compressor.

Compressor may be to big for the application

Change oil more often

A customer says his compressor does not make the same amount of air it used to.

Bad valves

Safety Valve

Protects the air tank, piping, and other equipment connected to the compressed air system from explosion should the air pressure exceed designed working pressure.

What can happen if the system does not have an safety valve?

What can happen if the safety valve is not the correct one?

How do you select the correct safety valve?

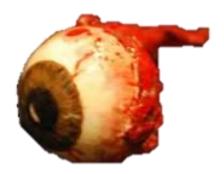
- The safety valve should protect the system from the worst case situation
- PSI the safety valve can be set for the MAWP (maximum allowable working pressure) of the air tank.
- CFM the safety valve flow should be greater than the flow of all of the air compressors connected to the tank.

Use lock out/tag out equipment when working with compressor equipment to prevent accidents.

Hard Hat

Hearing Proteciton

Is it ok to clean yourself with compressed air?



Dangers of Pointing Compressed Air on the Body

- The noise of spraying air can cause hearing loss
- Air blown into the mouth can rupture the lungs or stomach
- Compressed air can enter the blood stream and cause death
- It only takes 12 psi to blow out an eyeball from its socket

